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Abstract The poor performance of random writes has been a cause of major concern which needs to be addressed to
better utilize the potential of flash in enterprise-scale environments. We examine one of the important causes of this poor
performance: the design of the flash translation layer (FTL) which performs the virtual-to-physical address translations and
hides the erase-before-write characteristics of flash. We propose a complete paradigm shift in the design of the core FTL
engine from the existing techniques with our Demand-Based Flash Translation Layer (DFTL) which selectively caches page-
level address mappings. Our experimental evaluation using FlashSim with realistic enterprise-scale workloads endorses the

utility of DFTL in enterprise-scale storage systems by demonstrating: 1) improved performance, 2) reduced garbage collection
overhead and 3) better overload behavior compared with hybrid FTL schemes which are the most popular implementation
methods. For example, a predominantly random-write dominant I/O trace from an OLTP application running at a large
financial institution shows a 78% improvement in average response time (due to a 3-fold reduction in operations of the
garbage collector), compared with the hybrid FTL scheme. Even for the well-known read-dominant TPC-H benchmark,
for which DFTL introduces additional overheads, we improve system response time by 56%. Moreover, interestingly, when
write-back cache on DFTL-based SSD is enabled, DFTL even outperforms the page-based FTL scheme, improving their

response time by 72% in Financial trace.
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1 Introduction

Hard disk drives have been the preferred media
for data storage in enterprise-scale storage systems
for several decades. The disk storage market totals
approximately US�34 billion annually and is contin-
ually on the rise. Manufacturers of hard disk drives
have been successful in ensuring sustained performance
improvements while substantially bringing down the
price-per-byte. However, there are several shortcom-
ings inherent to hard disks that are becoming harder
to overcome as we move into faster and denser de-
sign regimes. First, designers of hard disks are finding
it increasingly difficult to further improve the revo-
lutions per minute (RPM) (and hence the internal
data transfer rate (IDR)) due to problems of dealing
with the resulting increase in power consumption and
temperature[1-2]. Second, any further improvement
in storage density is increasingly harder to achieve and
requires significant technological breakthroughs such as

perpendicular recording[3-4]. Third, despite a variety
of techniques employing caching, pre-fetching, schedul-
ing, write-buffering, and those based on improving par-
allelism via replication (e.g., RAID (redundant array of
independent disk)), the mechanical movement involved
in the operation of hard disks implies that the perfor-
mance of disk-based systems remains extremely sensi-
tive to workload characteristics. Hard disks are signif-
icantly faster for sequential accesses than for random
accesses — the IDR reflects and the gap continues to
grow. This can severely limit the performance that hard
disk based systems are able to offer to workloads with
significant random access component or lack of locality.
In an enterprise-scale system, consolidation can result
in the multiplexing of unrelated workloads imparting
randomness to their aggregate traffic[5].

Alongside improvements in disk technology, signifi-
cant advances have also been made in various forms of
solid-state memory such as NAND flash, magnetic
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RAM (MRAM)[6], phase-change memory (PCM)�,
and Ferroelectric RAM (FRAM)[7]. Solid-state me-
mory offers several advantages over hard disks: lower
and more predictable access latencies for random re-
quests, smaller form factors, lower power consumption,
lack of noise, and higher robustness to vibrations and
temperature. In particular, recent improvements in the
design and performance of NAND flash memory (sim-
ply flash henceforth) have resulted in it being employed
in many embedded and consumer devices. Small form-
factor hard disks have already been replaced by flash
memory in some consumer devices like music players,
PDAs, digital cameras.

The cost-per-byte for hard disks remains an order
of magnitude lower than for flash memory and disks
are likely to maintain this advantage in the foreseeable
future. At the same time, however, flash devices are
significantly cheaper than main memory technologies
that play a crucial role in improving the performance
of disk-based systems via caching and buffering. Fur-
thermore, as an optimistic trend, their price-per-byte
is falling[8], which leads us to believe that flash devices
would be an integral component of future enterprise-
scale storage systems. This trend is already evident
as major storage vendors have started producing flash-
based large-scale storage systems such as RamSan-500
from Texas Memory Systems, Symmetrix DMX-4 from
EMC, and so on.

Before enterprise-scale systems can transition to em-
ploying flash-based devices at a large-scale, certain chal-
lenges must be addressed. SSDs have longevity and re-
liability concerns in particular for write intensive work-
loads because of the lifetime issues of NAND flash chips.
Upon replacing hard disks with flash, certain managers
of enterprise-scale applications are finding results that
point to degraded performance. For example, the flash-
based devices can be slow down for workloads with ran-
dom writes[9-10]. Recent research has focused on im-
proving random write performance of flash by adding
DRAM-backed buffers[8] or buffering requests to in-
crease their sequentiality[10]. However, we focus on an
intrinsic component of the flash, namely the flash trans-
lation layer (FTL) to provide a solution for this poor
performance.

The FTL is one of the core engines in flash-based
SSDs that maintains a mapping table of virtual ad-
dresses from upper layers (e.g., those coming from file
systems) to physical addresses on the flash. It helps to
emulate the functionality of a normal block device by
exposing only read/write operations to the upper soft-
ware layers and by hiding the presence of erase opera-

tions, something unique to flash-based systems. Flash-
based systems possess an asymmetry in how they can
read and write. While a flash device can read any of
its pages (a unit of read/write), it may only write to
one that is in a special state called erased. This re-
sults in an important idiosyncrasy of updates in flash.
Clearly, in-place updates would require an erase-per-
update, causing performance to degrade. To get around
this, FTLs implement out-of-place updates. An out-of-
place update updates bring about the need for the FTL
to employ a garbage collection (GC) mechanism. The
role of the GC is to reclaim invalid pages within blocks
by erasing the blocks (and if needed relocating any valid
pages within them to new locations).

One of the main difficulties the FTL faces in ensur-
ing high performance is the severely constrained size
of the on-flash SRAM (static random-access memory)-
based cache where it stores its mapping table. With
the growing size of SSDs, this SRAM size is unlikely
to scale proportionally due to the higher price/byte of
SRAM. This prohibits FTLs from keeping virtual-to-
physical address mappings for all pages on flash (page-
level mapping). On the other hand, a block-level map-
ping, can lead to increased: 1) space wastage (due to
internal fragmentation) and 2) performance degrada-
tion (due to GC-induced overheads). Furthermore, the
specification for large-block flash devices (which are the
norm today) requires sequential programming within
the block[11] making such coarse-grained mapping in-
feasible. To counter these difficulties, state-of-the-art
hybrid FTLs take the middle approach of using a hy-
brid of page-level and block-level mappings and are pri-
marily based on the following main idea (we explain
the intricacies of individual FTLs in Section 2): most
of the blocks (called data blocks) are mapped at the
block level, while a small number of blocks called “up-
date” blocks are mapped at the page level and are used
for recording updates to pages in the data blocks.

As we will argue in this paper, various variants of
hybrid FTL fail to offer good enough performance for
enterprise-scale workloads. As a motivational illustra-
tion, Fig.1 compares the performance of a hybrid FTL
called FAST[12] with an idealized page-level mapping
scheme with sufficient flash-based SRAM.

First, these hybrid schemes suffer from poor garbage
collection behavior. Second, they often come with a
number of workload-specific tunable parameters (for
optimizing performance) that may be hard to set.
Finally and most importantly, they do not properly
exploit the temporal locality in accesses that most
enterprise-scale workloads are known to exhibit.

�Intel, STMicroelectronics Deliver Industry’s First Phase Change Memory Prototypes, 2008. http://www.intel.com/pressroom/
archive/releases/2008/20080206corp.htm, Oct. 2013.
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Fig.1. Comparison of the performance of a Financial trace em-

ploying an idealized page-level (assuming enough on-flash SRAM,

an idealization), and a hybrid FTL scheme.

Fig.2 shows the extremely high temporal locality
exhibited by two well-regarded workloads. Even the
small SRAM available on flash devices can thus effec-
tively store the mappings in use at a given time while
the rest could be stored on the flash device itself.

Our thesis is that such a page-level FTL, based
purely on exploiting such temporal locality, can outper-
form hybrid FTL schemes and also provide an easier-
to-implement solution devoid of complicated tunable
parameters. The specific contributions are list as fol-
lows.

We propose and design a novel flash translation
layer called DFTL. Unlike currently predominant hy-
brid FTLs, it is purely page-mapped. The idea behind
DFTL is simple: since most enterprise-scale work-
loads exhibit significant temporal locality, DFTL uses
the on-flash limited SRAM to store the most popular
(specifically, most recently used) mappings while the
rest are maintained on the flash device itself.

Using an open-source flash simulator called
FlashSim[13], we evaluate the efficacy of DFTL and
compare it with other FTL schemes. FlashSim sim-
ulates the flash memory, controller, caches, device
drivers and various interconnects. Using a number
of realistic enterprise-scale workloads, we demonstrate
the improved performance resulting from DFTL. As
illustrative examples, we observe 78% improvement in
average response time for a random write-dominant
I/O trace from an OLTP application running at a large
financial institution and 56% improvement for the read-
dominant TPC-H workload.

We also show that DFTL can even outperform the
ideal page-based FTL, reducing the system response
time by utilizing the remaining memory space that
could originally be used for storing mapping entries in
the ideal page-based FTL for write-back cache. We also

Fig.2. Cumulative distribution function (CDF) of virtual address

access frequency obtained from (a) I/O trace from a financial in-

stitution and (b) TPC-C benchmark shows existence of signifi-

cant temporal locality in I/O workloads. For the Financial trace,

about 80% of the accesses belong to the first 5 000 requests in

the LRU stack. The characteristics of workloads are described in

Table 4.

present that SSDs that implement DFTL show pre-
dictable I/O response time as DFTL can do away full
merge operations, minimizing GC overheads.

A preliminary version of the work was published in
[14] and in the paper we enhance FlashSim and con-
duct more corresponding experimental comparison and
of DFTL and other FTLs. Besides, the paper presents
more details of our DFTL implementation.

2 Background and Motivation

The mapping tables and other data structures, ma-
nipulated by the FTL are stored in a small, fast SRAM.
The FTL algorithms are executed on it. FTL helps
in emulating flash as a normal block device by per-
forming out-of-place updates which in turn helps to
hide the erase operations in flash. It can be imple-
mented at different address translation granularities.
At two extremes are page-level and block-level trans-
lation schemes which we will discuss next. As has
been stated, we begin by understanding two extremes
of FTL designs with regard to what they store in their
in-SRAM mapping table. Although neither is used in
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practice, these will help us understand the implications
of various FTL design choices on performance.

As shown in Fig.3(a), in a page-level FTL scheme,
the logical page number of the request sent to the de-
vice from the upper layers such as file system can be
mapped into any page within the flash. This should
remind the reader of a fully associative cache[15]. Thus,
it provides compact and efficient utilization of blocks
within the flash device. However, on the downside,
such translation requires a large mapping table to be
stored in SRAM. For example, a 16GB flash memory
requires approximately 32MB of SRAM space for stor-
ing a page-level mapping table. Given the order of mag-
nitude difference in the price/byte of SRAM and flash,
having large SRAMs which scale with increasing flash
size is infeasible.

Fig.3. (a) Page-level FTL scheme. (b) Block-level FTL scheme.

LPN: logical page number, PPN: physical page number, LBN:

logical block number, PBN: physical block number.

At the other extreme, in a block-level FTL scheme,
as depicted in Fig.3(b), page offset within a block is
fixed. The logical block number is translated into a
physical block number using the mapping table simi-
lar to set-associative cache design[15]. The logical page
number offset within the block is fixed. Fig.3(b) shows
an example of block-based address translation. The log-
ical page number (LPN) is converted into a logical block
number (LBN) and offset. The LBN is then converted
to physical block number (PBN) using the block-based
mapping table. Thus, the offset within the block is
invariant to address translation. The size of the map-
ping table is reduced by a factor of block size/page size
(128KB/2KB=64) as compared with page-level FTL.
However, it provides less flexibility as compared with
the page-based scheme. Even if there are free pages
within a block except at the required offset, this scheme
may require allocation of another free block, thus re-
ducing the efficiency of block utilization. Moreover,
the specification for large block-based flash devices re-
quiring sequential programming within the block. This
makes this scheme infeasible to implement in such de-
vices.

To address the shortcomings of the above two ex-
treme mapping schemes, researchers have come up with
a variety of alternatives. Log-buffer based FTL scheme
is a hybrid FTL which combines a block-based FTL
with a page-based FTL as shown in Fig.4. The entire
flash memory is partitioned into two types of blocks —
data and log/update blocks. First write to a logical ad-
dress is done in data blocks. Although many schemes
have been proposed[12,16-19], they share one fundamen-
tal design principle. All of these schemes are a hy-
brid between page-level and block-level schemes. They
logically partition their blocks into two groups — data
blocks and log/update blocks. Data blocks form the

Fig.4. Hybrid FTL scheme, combining a block-based FTL for data blocks with a page-based FTL for log blocks. PPN: physical page

number, LBN: logical block number, PBN: physical block number, LPN: logical page number.
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Fig.5. Various merge operations in log-buffer based FTL schemes. LPN: logical page number, V: valid, I: invalid, and F: free/erased.

(a) Switch merge. (b) Partial merge. (c) Full merge.

majority and are mapped using the block-level map-
ping scheme. A second special type of blocks are called
log blocks whose pages are mapped using a page-level
mapping style. Fig.4 illustrates such hybrid FTLs. Any
update on the data blocks are performed by writes to
the log blocks. The log-buffer region is generally kept
small in size (for example, 3% of total flash size[19])
to accommodate the page-based mappings in the small
SRAM. Extensive research has been done in optimizing
log-buffer based FTL schemes[12,16-19].

The hybrid FTLs invoke a garbage collector when-
ever no free log blocks are available. Garbage collec-
tion requires merging log blocks with data blocks. The
merge operations can be classified into: switch merge,
partial merge, and full merge. In Fig.5(a), since log
block B contains all valid, sequentially written pages
corresponding to data block A, a simple switch merge
is performed, whereby log block B becomes new data
block and the old data block A is erased. Fig.5(b) il-
lustrates partial merge between blocks A and B where
only the valid pages in data block A are copied to log
block B and the original data block A is erased chang-
ing the block B’s status to a data block. Full merge
involves the largest overhead among the three types of
merges. As shown in Fig.5(c), log block B is selected
as the victim block by the garbage collector. The valid
pages from the log block B and its corresponding data
block A are then copied into a new erased block C and
blocks A and B are erased.

Full merge can become a long recursive operation in
case of a fully-associative log block scheme where the
victim log block has pages corresponding to multiple
data blocks and each of these data blocks has updated
pages in multiple log blocks. This situation is illus-
trated in Fig.6.

Log block L1 containing randomly written data is
selected as a victim block for garbage collection. It
contains valid pages belonging to data blocks D1, D2
and D3. An erased block is selected from the free block
pool and the valid pages belonging to D1 are copied
to it from different log blocks and D1 itself in the or-
der shown. The other pages for D1 are copied similarly
from log block L2 and L3. The valid page in D1 itself is

Fig.6. Expensive full merge.

then copied into the new data block. The data block
D1 is then erased. Similar operations are carried out
for data blocks D2 and D3 since L1 contains the latest
version of some of the pages for these blocks. Finally,
log block L1 is erased. This clearly illustrates the large
overhead induced by full merge operations. Thus, ran-
dom writes in hybrid FTLs induce costly garbage col-
lection which in turn affects performance of subsequent
operations irrespective of whether they are sequential
or random. Recent log buffer-based FTL schemes[18-19]

have tried to reduce the number of these full merge ope-
rations by segregating log blocks based on access pat-
terns. Hot blocks with frequently accessed data genera-
lly contain a large number of invalid pages whereas cold
blocks have least accessed data. Utilizing hot blocks for
garbage collection reduces the valid page copying over-
head, thus lowering the full merge cost.

3 Design of DFTL: Our Demand-Based
Page-Mapped FTL

Demand-based page-mapped FTL (DFTL) is an en-
hanced form of the page-level FTL scheme described
in Section 2. It does away completely with the notion
of log blocks. In fact, all blocks in this scheme, can
be used for servicing update requests. Page-level map-
pings allow requests to be serviced from any physical
page on flash. However, as we remarked earlier, the
small size of on-flash SRAM does not allow all these
page-level mappings to be present in SRAM. However,
to make the fine-grained mapping scheme feasible with
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the constrained SRAM size, a special address transla-
tion mechanism has to be developed. In the next sub-
sections, we describe the architecture and functioning
of DFTL and highlight its advantages over existing hy-
brid FTL schemes.

3.1 Architectural Design

DFTL makes use of the presence of temporal loca-
lity in workloads to judiciously utilize the small on-flash
SRAM. Instead of the traditional approach of storing all
the address translation entries in SRAM, it dynamically
loads and unloads the page-level mappings depending
on the workload access patterns. Furthermore, it main-
tains the complete image of the page-based mapping
table on the flash device itself. There are two options
for storing the image: the OOB area or the data area
of the physical pages. We choose to store the mappings
in the data area instead of OOB area because it en-
ables us to group a larger number of mappings into a
single page as compared with storing in the OOB area.
For example, if four bytes are needed to represent the
physical page address in flash, then we can group 512
logically consecutive mappings in the data area of a sin-
gle page whereas only 16 such mappings would fit an
OOB area. Workloads exhibiting spatial locality can
benefit since this storage allows pre-fetching of a large
number of mappings into SRAM by reading a single
page. This amortizes the cost of this additional page-
read as subsequent requests are hit within the SRAM
itself. Moreover, the additional space overhead incurred
is negligible compared with the total flash size. A 1GB
flash device requires only about 2MB (approximately
0.2% of 1 GB) space for storing all the mappings.

Data Pages and Translation Pages. In order to store
the address translation mappings on flash data area,
we segregated data pages and translation pages. Data
pages contain the real data which is accessed or updated
during read/write operations whereas pages which
only store information about logical-to-physical address
mappings are called as translation pages. Blocks con-
taining translation pages are referred to as translation-
blocks and data blocks store only data pages. It should
be noted that we completely do away with log blocks.
As is clear from Fig.7, translation blocks are different
from log blocks and are only used to store the address
mappings. They require only about 0.2% of the entire
flash space and do not require any merges with data
blocks.

3.2 Logical to Physical Address Translation

A request is serviced by reading from or writing
to pages in the data blocks while the corresponding
mapping updates are performed in translation blocks.
In the following subsections, we describe various data
structures and mechanisms required for performing ad-
dress translation and discuss their impact on the overall
performance of DFTL.

Global Mapping Table and Global Translation Direc-
tory. The entire logical-to-physical address translation
set is always maintained on some logically fixed portion
of flash and is referred to as the global mapping table.
However, only a small number of these mappings can
be present in SRAM. These active mappings present in
SRAM form the cached mapping table (CMT). Since
out-of-place updates are performed on flash, translation
pages get physically scattered over the entire flash

Fig.7. Schematic design of DFTL. DLPN: logical data page number, DPPN: physical data page number, MVPN: virtual translation

page number, MPPN: physical translation page number.
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memory. DFTL keeps track of all these translation
pages on flash by using a global translation directory
(GTD). Although GTD is permanently maintained in
the SRAM, it does not pose any significant space over-
head. For example, for a 16GB flash memory de-
vice, 16 384 translation pages are needed (each capable
of storing 512 mappings), requiring a GTD of about
64KB.

DFTL Address Translation Process. Algorithm 1 de-
scribes the process of address translation for servicing
a request. If the required mapping information for the
given read/write request exists in SRAM (in CMT), it
is serviced directly by reading/writing the data page on
flash using this mapping information. If the informa-
tion is not present in SRAM then it needs to be fetched
into the CMT from flash. However, depending on the
state of CMT and the replacement algorithm being

Algorithm 1. DFTL Address Translation

Input: request’s logical page number (request lpn),

request’s size (request size)

Output: NULL

while request size �= 0 do

if request lpn miss in cached mapping table then

if cached mapping table is full then

/* Select entry for eviction using segmented

LRU replacement algorithm */

victim lpn ← select victim entry()

if victim last mod time �= victimload time then

/*victimtype: translation or data block

Translation Pagevictim: physical transla-

tion-page number containing victim

entry */

Translation Pagevictim ← consult GTD

(victimlpn)

victimtype ← translation block

DFTL Service Request(victim)

end

erase entry(victim lpn)

end

Translation Pagerequest ← consult GTD(request lpn)

/* Load map entry of the request from flash into

cached mapping table */

load entry (Translation Pagerequest)

end

request type ← data block

requestppn ← CMT lookup(request lpn)

DFTL Service Request(request)

request size −−
end

used, it may entail evicting entries from SRAM. We
use the segmented LRU array cache algorithm[20] for
replacement in our implementation. However, other al-
gorithms such as evicting Least Frequently Used map-
pings can also be used.

If the victim chosen by the replacement algorithm
has not been updated since the time it was loaded
into SRAM, then the mapping is simply erased with-
out requiring any extra operations. This reduces traffic
to translation pages by a significant amount in read-
dominant workloads. In our experiments, approxi-
mately 97% of the evictions in read-dominant TPC-H
benchmark did not incur any eviction overheads. Oth-
erwise, the global translation directory is consulted to
locate the victim’s corresponding translation page on
flash. The page is then read, updated, and re-written
to a new physical location. The corresponding GTD
entry is updated to reflect the change. Now the incom-
ing request’s translation entry is located using the same
procedure, read into the CMT and the requested oper-
ation is performed. The example in Fig.8 illustrates the
process of address translation when a request incurs a
CMT miss. Suppose a request to DLPN 1 280 incurs
a miss in cached mapping table (CMT) (1). A vic-
tim entry DLPN 1 is selected, its corresponding trans-
lation page MPPN 21 is located using global transla-
tion directory (GTD) (2), MPPN 21 is read, updated
(DPPN130 → DPPN 260) and written to a free transla-
tion page (MPPN 23) (3)∼(4), GTD is updated (MPPN

21 → MPPN 23) and DLPN 1 entry is erased from CMT
(5)∼(6). The original request’s (DLPN 1 280) transla-
tion page is located on flash (MPPN 15) (7)∼(11). The
mapping entry is loaded into CMT and the request is
serviced. Note that each GTD entry maps 512 logically
consecutive mappings.

Overhead in DFTL Address Translation. The worst-
case overhead includes two translation page reads (one
for the victim chosen by the replacement algorithm and
the other for the original request) and one translation
page write (for the victim) when a CMT miss occurs.
However, our design choice is rooted deeply in the exis-
tence of temporal locality in workloads which helps in
reducing the number of evictions. As discussed earlier,
pre-fetching of mapping entries for I/O streams exhibit-
ing spatial locality also helps to amortize this overhead.
Furthermore, the presence of multiple mappings in a
single translation page allows batch updates for the en-
tries in the CMT, physically co-located with the victim
entry. We later show through detailed experiments that
the extra overhead involved with address translation is
much less as compared with the benefits accrued by
using a fine-grained FTL.
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Fig.8. Example of DFTL address translation process.

3.3 Read/Write Operation and Garbage
Collection

Till now our focus is on performing address transla-
tion to locate the page to be read or updated. In this
subsection, we explain the actual data read and write
operations along with the garbage collection mechanism
involved. Read requests are directly serviced through
flash page read operations once the address translation
is completed. DFTL maintains two blocks, namely cur-
rent data block and current translation block, where the
data pages and translation pages are written, respec-
tively. Page-based mappings allow sequential writes
within these blocks, thus conforming to the large-
block sequential write specification[11]. DFTL main-
tains pointers to the next free pages in the data and
map blocks being currently written to. For write re-
quests, DFTL allocates the next available free page in
the current data block, writes to it and then updates
the map entry in the CMT.

However, as writes/updates propagate through the
flash, over a period of time the available physical blocks
(in erased state) decreases. DFTL maintains a high wa-
termark called GC threshold, which represents the limit
till which writes are allowed to be performed without
incurring any overhead of garbage collection for recy-
cling the invalidated pages. This threshold can be ad-
justed with changing workload characteristics to opti-
mize flash device performance. If it is set to a high level,
the garbage collector will be invoked more often but the
system will be able to maintain a high percentage of
erased blocks. On the other hand, a lower setting helps
to improve block utilization in the flash device while
making the system operate at a resource-constrained
level. Thus a delicate balance must be maintained to
optimize performance. This is one of the biggest advan-
tages in DFTL as none of the other state-of-the-art hy-

brid FTL schemes provide this adaptability to changing
workload environments. Once GC threshold is crossed,
DFTL invokes the garbage collector. Victim blocks are
selected based on a simple cost-benefit analysis that we
adapt from [21]. In this analysis, cost represents the
overhead involved in copying valid pages from the vic-
tim block and benefit is the amount of free space re
claimed. These aspects of garbage collection are well
studied and not the focus of our research. Any other
garbage collection algorithm can be employed. How-
ever, we found empirically that minimizing the cost
of valid page copying reduces the overall garbage col-
lection overhead which in turn improves device perfor-
mance during periods of intense I/Os by servicing the
requests quicker and reducing the queuing delays in var-
ious storage subsystems.

Different steps are followed depending on whether
the victim is a translation block or a data block be-
fore returning it to the free block pool after erasing
it. If it is a translation block, then we copy the valid
pages to the current translation block and update the
GTD. However, if the victim is a data block, we copy
the valid pages to the current data block and update
all the translation pages and CMT entries associated
with these pages. In order to reduce the operational
overhead, we utilize a combination of lazy copying and
batch updates. Instead of updating the translation
pages on flash, we only update the CMT for those data
pages whose mappings are present in it. This tech-
nique of lazy copying helps in delaying the prolifera-
tion of updates to flash till the corresponding mappings
are evicted from SRAM. Moreover, multiple valid data
pages in the victim may have their virtual-to-physical
address translations present in the same translation-
page. By combining all these modifications into a sin-
gle batch update, we reduce a number of redundant
updates. The associated global translation directory
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entries are also updated to reflect the changes. The
examples in Figs. 9 and 10 display the working of our
garbage collector when the GC threshold is reached. Fig.9

is when a translation block is selected as victim and
Fig.10 is when a data block is selected as victim. Algo-
rithm 2 shows the detailed description of read/write

Fig.9. Example of translation block as victim for garbage collection. (a) Select victim block. Translation block (MPBN B1) is selected

as victim for garbage collection. (b) Copy valid map pages. Valid pages MPPN 12 & MPPN 13 are copied to the current translation

block (MPBN B2) at free pages MPPN 22 & MPPN 23. (c) Update global translation directory. Global translation directory entries

corresponding to MVPN 0 & MVPN 2 are updated (MPPN 12→ MPPN 22, MPPN 13 → MPPN 23).

Fig.10. Example of data block as victim for garbage collection. (a) Select victim block. Data block (DPBN B3) is selected as victim

for garbage collection. (b) Copy valid data pages. Valid pages DPPN 110 & DPPN 111 are copied to the current data block (DPBN

B4) at free pages DPPN 202 & DPPN 203. (c) Update corresponding translation page. Translation page MPPN 12 containing the

mappings for the valid pages DPPN 110 & DPPN 111 is updated and copied to the current map block (MPBN B2). (d) Update global

translation directory. Global translation directory entry corresponding to MVPN 0 is updated (MPPN 12 → MPPN 32). (e) Update

cached mapping table. Since DLPN 0 is present in cached mapping table, the entry is also updated (DPPN 110 → DPPN 202). Note:

We do not illustrate the advantages of batch updates and lazy copying in this example.
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Algorithm 2. Garbage Collection

Input: NULL

Output: NULL

victim ← select victim entry();

/* Victim is translation block */

if victimtype ∈ TRANSLATION BLOCK SET then

/* 1) Copy only valid pages in the victim block to

the current translation block, 2) invalidate old

pages, and update GDT */

foreach victimpage(i) do

if victimpage(i) is valid then

curr translation blk ← get curr translation

blk();

copy page(victimpage(i), curr map blk);

update GTD(victimpage(i));

end

end

end

else

/* Victim is data block */ foreach victimpage(i) do

/* Copy only valid pages in the victim block to

the current data block, invalidate old pages,

and mark their corresponding translation pages

for update */

if victimpage(i) is valid then

curr data blk ← get curr data blk();

copy page(victimpage(i), curr data blk);

translation page update set []← mark corr

translation page for update (victimpage(i));

end

end

/* Perform batch update on the marked translation

pages */

foreach translation page i ∈ translation page update

set do

curr translation blk ← get curr translation blk();

old translation page ← translation pagei;

update translation page(translation pagei,

curr translation blk);

invalidate(old translation page);

update GTD(translation pagei);

if translation page i ∈ Cached Mapping Table then

update CMT (translation page i);

end

end

end

erase blk (victim); /* Erase the victim block */

operation including garbage collection mechanism in
our implementation consideration.

Although flash is a non-volatile storage device, it
relies on volatile on-flash SRAM which is susceptible
to power failure in the host. Power-failure followed
by data loss on cached mapping entries, are general
problems for all FTL schemes where mapping entries
are storage on the volatile memory. When power fail-
ure occurs, all logical-physical mapping information
stored in the cached mapping table on SRAM will be
lost. Note that we do not discuss how to improve the
risk of data loss for power-failure, instead, we discuss
how effectively and fast, DFTL can recover the loss
of cached mappings in an even of power-failure with a
small amount of battery-backup cache support. The
traditional approach of reconstructing the mapping ta-
ble utilizes scanning the logical addresses stored in the
OOB area of all physical pages on flash[12]. However,
the scanning process incurs high overhead and leads to
long latencies while the mapping table is being recov-
ered. In DFTL, the global translation directory stores
the locational information corresponding to the global
mapping table. Thus, storing the GTD on non-volatile
storage (e.g., battery backed memory) resilient to power
failure such as a fixed physical address location on flash
device itself helps to bootstrap recovery. This can be
performed periodically or depending on the required
consistency model. Moreover, since GTD size is very
small (4 KB for 1GB flash), the overhead involved in
terms of both space and extra operations is also very
small. However, at the time of power failure there may
be some mappings present in the cached mapping table,
that have been updated but not written back to map
pages on flash yet. If strong consistency is required then
even the cached mapping table needs to be saved along
with the GTD.

3.4 Comparison of Existing FTLs with DFTL

Table 1 shows some of the salient features of different
FTL schemes. The DFTL architecture provides some
intrinsic advantages over existing hybrid FTLs which
are as follows.

Existing hybrid FTL schemes try to reduce the num-
ber of full merge operations to improve their perfor-
mance. DFTL, on the other hand, completely does
away with full merges. This is made possible by page-
level mappings which enable relocation of any logical
page to any physical page on flash while other hy-
brid FTLs have to merge page-mapped log blocks with
block-mapped data blocks.

DFTL utilizes page-level temporal locality to store
pages which are accessed together within same physical
blocks. This implicitly separates hot and cold blocks as
compared to LAST and Superblock schemes[18-19] re-
quire special external mechanisms to achieve the segre-
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Table 1. FTL Schemes Classification

Replacement BAST FAST SuperBlock LAST DFTL Ideal Page

Block FTL FTL

FTL type Block Hybrid Hybrid Hybrid Hybrid Page Page

Mapping Block DB-block DB-block SB-block DB/sequential LB- Page Page

granularity LB-page LB-page LB/blocks within block

SB-page Random LB-page

Division − − 1 sequential − (m) sequential- − −
of update + (M − 1) (M − m) Random

blocks (M) random (hot and cold)

Associativity (1 : K) (1 : M) Random LB-(N : M − 1) (S : M) Random LB-(N : M − m) (N : N) (N : N)

of blocks sequential LB-(1:1) Sequential LB- (1:1)

(data:update)

Blocks available Replacement Log Log blocks Log blocks Log blocks All data All

for updates blocks blocks blocks blocks

Full merge Yes Yes Yes Yes Yes No No

operations

Note: N : number of data blocks, M : number of log blocks, S: number of blocks in a super block, K: number of replacement blocks.
DB: data block, LB: log block, SB: super block. In FAST and LAST FTLs, random log blocks can be associated with multiple data
blocks.

gation. Thus, DFTL adapts more efficiently to chang-
ing workload environment as compared with existing
hybrid FTL schemes.

Poor random write performance is argued to be a
bottleneck for flash-based devices. As is clearly evident,
it is not necessarily the random writes which cause poor
flash device performance but the intrinsic shortcomings
in the design of hybrid FTLs which cause costly merges
(full and partial) on log blocks during garbage collec-
tion. Since DFTL does not require these expensive full-
merges, it is able to improve random write performance
of flash devices.

All hybrid log-buffer based schemes maintain a very
small fraction of log blocks (3% of total blocks[19])
to keep the page-level mapping footprint small (in
SRAM). This forces them to perform garbage collec-
tion as soon as these log blocks are utilized. Some
schemes[17-18] may even call garbage collector even
though there are free pages within these log blocks (be-
cause of low associativity with data blocks). DFTL,
on the other hand, can delay garbage collection till
GC threshold is reached which can be dynamically ad-
justed to suit various input streams.

In hybrid FTLs, only log blocks are available for ser-
vicing update requests. This can lead to low block uti-
lization for workloads whose working-set size is smaller
than the flash size. Many data blocks will remain un-
utilized (hybrid FTLs have block-based mappings for
data blocks) and unnecessary garbage collection will be
performed. DFTL solves this problem since updates
can be performed on any of the data blocks.

4 Experimental Setup

In order to study the performance implica-
tions of various FTL schemes, we develop a sim-
ulation framework for flash-based storage systems
called FlashSim[13]. FlashSim is built by enhancing
Disksim[22], a well-regarded disk drive simulator. It was
designed with a modular architecture with the capabi-
lity to model a holistic flash-based storage environment.
It is able to simulate different storage sub-system com-
ponents including device drivers, controllers, caches,
flash devices, and various interconnects. In our inte-
grated simulator, we add the basic infrastructure re-
quired for implementing the internal operations (page
read, page write, block erase, etc.) of a flash-based
device. The core FTL engine is implemented to pro-
vide virtual-to-physical address translations along with
a garbage collection mechanism. Furthermore, we im-
plement a multitude of FTL schemes: 1) a block-
based FTL scheme (replacement-block FTL[23]), 2) a
hybrid FTL (FAST[12]), 3) LAST (LAST[19]), 4) our
page-based DFTL scheme, and 5) an idealized page-
based FTL. This setup is used to study the impact of
various FTLs on flash device performance and more
importantly on the components in the upper stor-
age hierarchy. FlashSim has been validated against
commercial SSDs in terms of performance behavioral
similarity[13].

We simulate a 32GB NAND flash memory device.
The SSD simulator uses simulation parameters and de-
vice specification in Tables 2 and 3. To conduct a fair
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Table 2. Simulation Parameters

Default SSD Simulation Parameters

Flash type Large block

Page (data/OOB) 2KB/64 B

Block (128 KB + 4KB)

Latency & Energy Consumption

Page read (130.9 µs, 4.72 µJ)

Page write (405.9µs, 38.04µJ)

Block erase (1.5ms, 527.68 µJ)

Table 3. SSD Device Specifications

Firmware

Garbage collection Yes

Wear-leveling Implicit/explicit

FTL Page/DFTL/FAST/LAST

comparison of different FTL schemes, we consider only
a portion of flash as the active region which stores
our test workloads. The remaining flash is assumed
to contain cold data or free blocks which are not under
consideration during the evaluation. We assume the
SRAM to be just sufficient to hold the address transla-
tions for FAST FTL. Since the actual SRAM size is not
disclosed by device manufacturers, our estimate repre-
sents the minimum SRAM required for the functioning
of a typical hybrid FTL. We allocate extra space (ap-
proximately 3% of the total active region[18]) for use as
log-buffers by the hybrid FTL.

We use a mixture of real-world and synthetic traces
to study the impact of different FTLs on a wide spec-
trum of enterprise-scale workloads. Table 4 presents
salient features of our workloads. We employ a write-
dominant I/O trace from an OLTP application running
at a financial institution� made available by the Stor-
age Performance Council (SPC), henceforth referred to
to as the Financial trace. We also experiment using
Cello99�, which is a disk access trace collected from
a time-sharing server exhibiting significant writes; this
server was running the HP-UX operating system at
Hewlett-Packard Laboratories. We consider two read-
dominant workloads to help us assess the performance
degradation, if any, suffered by DFTL in comparison
with other hybrid FTL schemes due to its address
translation overhead. For this purpose, we use TPC-
H[24], which is an ad-hoc, decision-support benchmark
(OLAP workload) examining large volumes of data to
execute complex database queries. Also, we use a read-
dominant Web search engine trace� made available by
SPC. Finally, apart from these real traces we also use
a number of synthetic traces to study the behavior of

different FTL schemes for a wider range of workload
characteristics than those exhibited by the above real-
world traces.

Table 4. Enterprise-Scale Workload Characteristics

Workloads Avg. Req. Read Sequentiality Inter-Arrival

Size (KB) (%) (%) Time (ms)

Financial (OLTP) 4.38 9.0 2.0 133.50

Cello99 5.03 35.0 1.0 41.01

TPC-H (OLAP) 12.82 95.0 18.0 155.56

Web search 14.86 99.0 14.0 9.97

The device service time is a good metric for esti-
mating FTL performance since it captures the over-
heads due to both garbage collection and address trans-
lation. However, it does not include the queuing de-
lays for requests pending in I/O driver queues. In this
study, we utilize both 1) indicators of the garbage col-
lector’s efficacy and 2) response time as seen at the
I/O driver (this is the sum of the device service time
and time spent waiting in the driver’s queue, we will
call it the system response time) to characterize the
behavior/performance of the FTLs. The garbage col-
lection overhead is demonstrated through the impact
of merges, the copying of valid pages, and the erasing
of the blocks in these operations. In subsequent sub-
sections, we highlight the cost of full merges, examine
the performance of different FTL schemes, and evaluate
their ability to handle overload conditions in different
workloads.

5 Results

5.1 Analysis of Garbage Collection and
Address Translation Overheads

As explained in Section 2, the garbage collector
may have to perform merge operations of various kinds
(switch, partial, and full) while servicing update re-
quests. Recall that merge operations pose overheads
in the form of block erases. Additionally, merge opera-
tions might induce copying of valid pages from victim
blocks — a second kind of overhead. We report both
these overheads and the different kinds of merge ope-
rations in Fig.11 for our workloads. As expected from
Section 3 and corroborated by the experiments shown
in Fig.11, read-dominant workloads (TPC-H and Web
Search) — with their small percentage of write requests
— exhibit much smaller garbage collection overheads
than Cello99 or Financial trace. The number of merge
operations and block erases are so small for the highly

�OLTP trace from UMass Trace Repository, http://traces.cs.umass.edu/index.php/Storage/Storage, May 2013.
�HP-Labs. Tools and Traces. http://tesla.hpl.hp.com/public software/, May 2013.
�WebSearch trace from UMass Trace Repository, http://traces.cs.umass.edu/index.php/Storage/Storage, May 2013.
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read-dominant Web Search trace that we do not show
these in Figs.11(a), 11(b), and 11(c).

Hybrid FTLs can perform switch merges only when
the victim update block (selected by garbage collector)
contains valid data belonging to logically consecutive
pages. DFTL, on the other hand, with its page-based
address translation, does not have any such restriction.
Hence, DFTL shows a larger number of switch merges
for even random-write dominant Financial trace as seen
in Fig.11(a).

For TPC-H, although DFTL shows a larger number
of total merges, its fine-grained addressing enables it to
replace full merges with less expensive partial merges.
With FAST as many as 60% of the full merges involve
more than 20 data blocks. As we will observe later, this
directly impacts FAST’s overall performance. Fig.11(b)
shows the larger number of block erases with FAST
as compared with DFTL for all our workloads. This
can be directly attributed to the large number of data
blocks that need to be erased to complete the full merge
operation in hybrid FTLs. Moreover, in hybrid FTLs
only a small fraction of blocks (log blocks) are available
as update blocks, whereas DFTL allows all blocks to
be used for servicing update requests. This not only
improves the block utilization in our scheme as com-

pared with FAST but also contributes in reducing the
invocation of the garbage collector.

DFTL introduces some extra overheads due to its
address translation mechanism (due to missed map-
pings that need to be brought into the SRAM from
flash). Fig.11(c) shows the normalized overhead (with
respect to FAST FTL) from these extra read and write
operations along with the extra valid pages required to
be copied during garbage collection. Even though the
address translation accounts for approximately 90% of
the extra overhead in DFTL for most workloads, over-
all it still performs less extra operations than FAST.
For example, DFTL yields a 3-fold reduction in ex-
tra read/write operations over FAST for the Financial
trace. Our evaluation supports the key insight behind
DFTL, namely that the temporal locality present in
workloads helps keep this address translation overhead
small, i.e., most requests are serviced from the map-
pings in SRAM. DFTL is able to utilize page-level tem-
poral locality in workloads to reduce the valid page
copying overhead since most hot blocks (data blocks
and translation blocks) contain invalid pages and are
selected as victims by our garbage collector. In our ex-
periments, we observe about 63% hits for address trans-
lations in SRAM for the financial trace even with our

Fig.11. Overheads with different FTL schemes. (a) Merge operations. (b) Block erases. (c) Extra read/write operations. We compare

DFTL with FAST and Baseline for three workloads: Financial, Cello99, and TPC-H. The overheads for the highly read-oriented Web

Search workload are significantly smaller than the others and we do not show them here. In (c), address translation (read) and address

translation (write) denote the extra read and write operations for address translations required in DFTL, respectively. All extra

read/write operations have been normalized with respect to FAST FTL scheme.
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conservatively chosen SRAM size. Furthermore, the
relatively high address translation overhead can be at-
tributed to the minimal size of SRAM that we have
used in our experiments. All the values used in Fig.11
are in Table 5.

5.2 Performance Analysis

Having seen the comparison of the overheads of
garbage collection and address translation for differ-
ent FTLs, we are now in a position to appreciate their
impact on the performance offered by the flash de-
vice. The performance of any FTL scheme deterio-
rates with increase in garbage collection overhead. The
Baseline scheme does not incur any address transla-
tion overhead and is also able to prevent full-merges
because of fine-grained mapping scheme. Thus, it shows
the best performance amongst all other implementable
FTL schemes. The cumulative distribution function of
the average system response time for different work-
loads is shown in Fig.12.

DFTL is able to closely match the performance of
Baseline scheme for the Financial and Cello99 traces,
both random-write dominant workloads. In case of
the Financial trace, DFTL reduces the total number of
block erases as well as the extra page read/write opera-
tions by about three times, thus decreasing the overall
merge overhead by about 76%. This results in improved
device service time and shorter queuing delay (refer to
Table 6) which in turn improve the overall I/O system
response time by about 78% as compared to FAST.

For Cello99, the improvement is much more dra-

matic because of the high I/O intensity which increases
the pending requests in the I/O driver queue, resulting
in higher latencies. Readers should be careful about the
following while interpreting these results: we would like
to point out that Cello99 represents only a point within
a much larger enterprise-scale workload spectrum for
which the gains offered by DFTL are significantly large.
More generally, DFTL is found to improve the average
response time of workloads with random writes with
the degree of improvement varying with the workload’s
properties.

For read-oriented workloads, DFTL incurs a larger
additional address translation overhead and its per-
formance deviates from the Baseline (Figs.12(c) and
12(d)). Since FAST is able to avoid any merge opera-
tions in the Web Search trace, it provides performance
comparable to Baseline. However, for TPC-H, it ex-
hibits a long tail primarily because of the expensive
full merges and the consequent high latencies seen by
requests in the I/O driver queue. Hence, even though
FAST services about 95% of the requests faster than
DFTL, it suffers from long latencies in the remaining
requests, resulting in a higher average system response
time than DFTL.

For FAST to match the performance of DFTL for
random-write dominant workloads, it needs a faster
flash device. Fig.13 shows the necessary flash device
speed-up required for FAST to achieve the performance
comparable with our FTL scheme. A four times faster
flash will require more investment to attain similar re-
sults. Thus, DFTL even helps in reducing deployment
costs for flash-based SSD devices in enterprise-servers.

Table 5. Analysis of Garbage Collection Overhead for Various FTLs

Workloads FTL Erase (#) Merges Read Overhead Write Overhead

Type Data Map SM P F (1) (2) (3) (4) (5) (6) (7) (8)

Financial Baseline 10 111 - 5 275 4 836 - 15 573 - - - 15 573 - - -

DFTL 10 176 4 240 5 650 8 766 - 19 369 5 945 517 456 7 582 19 369 5 945 258 017 7 582

FAST 151 180 - 374 5 967 8 865 1 508 490 - - - 1 508 490 - - -

Cello Baseline 10 787 - 447 10 340 - 81 109 - - - 81 109 - - -

DFTL 10 795 5 071 353 15 513 - 82 956 42 724 730 107 29 010 82 956 42 724 251 518 29 010

FAST 134 676 - 1 9 763 7 694 3 149 194 - - - 3 149 194 - - -

TPC-H Baseline 2 544 - 14 2 530 - 102 130 - - - 102 130 - - -

DFTL 2 678 2 118 5 4 791 - 110 716 75 255 1 449 183 10 018 110 716 75 255 50 242 10 023

FAST 19 476 - 5 949 568 618 459 - - - 618 459 - - -

Web Search Baseline - - - - - - - - - - - - -

DFTL 15 350 - 365 - 480 6 391 1 588 120 51 480 6 391 16 390 51

FAST - - - - - - - - - - - - -

Note: (1): number of data page reads in GC, (2): number of map page reads in GC, (3): number of map page reads for address
translation, and (4): number of map page reads when victim block is a data block. (5): number of data page writes in GC, (6):
number of map page writes in GC, (7): number of map page writes for address translation, and (8): number of map page writes
when victim block is a data block. “Baseline” in FTL type denotes a baseline FTL scheme. SM: number of switch merge operations,
P : number of partial mergy operations, F : number of full merge operations.
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Fig.12. Each graph shows the cumulative distribution function (CDF) of the average system response time for different FTL schemes.

(a) Financial trace (OLTP). (b) Cello99. (c) TPC-H. (d) Web Search.

Table 6. Performance Results for Different FTL Schemes

Workloads FTL Type System Response Dev. Response I/O Queuing

Time (ms) Time (ms) Delay (ms)

Avg. Std. Dev Avg. Std. Dev Avg. Std. Dev

Financial Baseline 0.43 0.81 0.39 0.79 0.04 0.19

FAST 2.75 19.77 1.67 13.51 1.09 13.55

DFTL 0.61 1.52 0.55 1.50 0.06 0.29

Cello99 Baseline 1.50 4.96 0.41 0.80 1.08 4.88

FAST 16.93 52.14 2.00 14.59 14.94 50.20

DFTL 2.14 6.96 0.59 1.04 1.54 6.88

TPC-H Baseline 0.79 2.96 0.68 1.78 0.11 2.13

FAST 3.19 29.56 1.06 11.65 2.13 26.74

DFTL 1.39 7.65 0.95 2.88 0.44 6.57

Web Search Baseline 0.86 0.64 0.68 0.44 0.18 0.46

FAST 0.86 0.64 0.68 0.44 0.18 0.46

DFTL 1.24 1.06 0.94 0.68 0.30 0.78
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Fig.13. Performance improvement of FAST with flash device

speed-up for the Financial. Average response time has been nor-

malized with respect to DFTL performance without any speed-up

(1X).

In the following subsection, we examine the vari-
ous overheads associated with different FTL schemes
including the cost imposed by garbage collection, espe-
cially full-merges in state-of-the-art hybrid FTLs and
the address translation overhead in DFTL.

We also performance a microscopic analysis of the
impact of garbage collection on instantaneous response
time by installing probes within FlashSim to trace in-
dividual requests. Detailed results can be found in [14].
Also we study the impact of increased SRAM size on
DFTL. We have seen that greater SRAM size improves
the hit ratio, reducing the address translation overhead
in DFTL, and thus improving flash device performance.
However, increasing the SRAM size for holding address
translations beyond the workload working-set size does
not provide any tangible performance benefit. It would
be more beneficial to utilize the extra SRAM for caching
popular read requests, or buffering writes than for stor-
ing unused address translations. The results about this
can be found in [14].

5.3 Impact of SSD Cache on SSDs

All the experiments in the preceding subsections
were done by ignoring the effect of SSD cache. How-
ever, it will be interesting to see the effect of SSD cache
on FTL performance. As mentioned earlier, DFTL and
FAST FTLs require less SRAM space for mapping en-
tries compared to ideal page-based FTL. We consider
32GB SSD. The ideal page-based FTL needs 16MB
SRAM to maintain all mapping entries whereas DFTL
and FAST FTLs require only 32KB SRAM for the map-
ping entries. Thus, the DFTL and FAST FTLs can uti-
lize the remaining huge memory space except for the
memory space for mapping entries from entire 16MB

SRAM. However, there is no available memory space
used for data cache in the ideal page-based FTL.

Fig.14 shows the impact of SSD cache on FTL per-
formance when those remaining memory spaces are
used for data cache. As expected, the cache improves
flash device performance, reducing the amount of re-
quests sent to the flash device (by about 85% for Finan-
cial trace and 58% for TPC-H). The results show the
normalized average response time with respect to the
baseline. DFTL scheme with cache even further out-
performs the baseline, improving their response time
by 72% in Financial trace. However, it is still worse
than the baseline in TPC-H. It is because our cache is
a write-back cache which is highly optimized for write-
dominant workloads (note that TPC-H is a read dom-
inant workload) and the DFTL still suffers from ex-
tra overhead which is inevitable for the management of
mapping entries. Thus, in these workloads, it would be
better to increase the SRAM area for mapping tables
while allocating less SRAM for data cache when DFTL
scheme is used. FAST FTL scheme with cache also im-
proves their response time in both workloads. However
they are still worse than the baseline schemes because
the FAST FTLs still suffer from expensive full merge
operations.

Fig.14. Performance improvement of DFTL and FAST FTLs

with device caches. Average response time has been normal-

ized with respect to baseline (ideal page-based FTL) performance

without cache. (a) Financial trace. (b) TPC-H benchmark.
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5.4 Performance Comparison of Various FTL
Schemes

We have studied that DFTL could outperform FAST
FTL scheme by completely doing away full merge
operation in GC phases. In this subsection, we com-
pare how effective DFTL is against the enhanced FTL
over FAST FTL scheme, called LAST[19]. In particular,
LAST improves the performance shortcomings of the
FAST FTL scheme that was caused by the full merge
operations, by employing multiple sequential log blocks
to exploit spatial locality in workloads, and separating
random log blocks into hot and cold regions to allevi-
ate the full much operation cost. We have implemented
the LAST FTL scheme by enhancing the FAST FTL
scheme and we study the efficiency of DFTL against
those hybrid FTL schemes. For performance compari-
son, we are particularly interested in the GC efficiency
in terms of number of block erase operations and addi-
tional page read and write operations.

Fig.15 shows the results of our performance compar-
isons for different FTL schemes in the Financial and
TPC-H traces. Fig.15(a) presents normalized block
erase operations for FTL schemes, which are normal-
ized with respect to block erase operations of the base-
line (ideal page-based FTL scheme). We see that DFTL
increases the number of block erase operations by 42%
over the baseline whereas FAST and LAST increase

Fig.15. GC efficiency comparison by different FTL schemes. (a)

Financial trace. (b) TPC-H benchmark.

them by 1 401% and 1 231% respectively over the base-
line. Referring to the explanation that we made for
DFTL in its design section, DFTL requires additional
page read and writes due to address translation, for
CMT misses, and page mapping entries synchroniza-
tion between CMT and page table on flash, increasing
additional address translation page read and write, fol-
lowed by GC overhead over the baseline. For FAST,
it is all attributed to high cost of full merge opera-
tion. However, we see that LAST could reduce the erase
cost of FAST by 11.3%, which mostly benefits from the
hot-cold separation technique for small random write
blocks. In addition to block erase operations, we ob-
serve significantly increased additional page read and
write operations by GC; DFTL increases those addi-
tional page read and write operation by GC by 130%
however, FAST and LAST make huge increase in those
operations against the baseline. However, again LAST
could reduce those addition page read and write opera-
tions over the FAST by 25%. We have the similar obser-
vation from the TPC-H benchmark results in Fig.15(b)
as we have from the financial trace results.

5.5 Energy Efficiency Analysis of Various FTL
Schemes

Even if the power consumption of the flash memory
in the SSD may not be significant when compared with
other components (CPU and Memory), erasing and
writing in the SSD could affect the overall energy effi-
ciency. Table 2 presents that erase operations consume
significant power compared with read and write ope-
rations, and write operations also consume about an
order of magnitude more power than read operations.
We enhance our SSD simulator to be able to study
energy efficiency with different FTL schemes on SSDs
and we compare four different kinds of FTL schemes
for their energy efficiency; ideal page-based mapping
scheme (baseline), FAST[12], LAST[19] and DFTL.

Fig.16 shows the energy consumption by flash inter-
nal operations for different FTL schemes in the Finan-
cial and TPC-H traces. Note that the Financial trace is
mostly random-write-dominant, while TPC-H is read-
dominant (refer to Table 4). Thus, the energy consump-
tion for the Financial trace is much higher than that of
TPC-H due to the power consumptions caused by GCs.
DFTL requires additional page read and write opera-
tions due to mapping table entry misses in the memory,
causing additional energy consumption in both traces.
As we expected, due to the high cost of full merge
operations in the FAST FTL scheme, Fig.16 presents
the most significant energy consumption for both erase
and write operations during merge operation in the GC
phase among compared FTL schemes. We also observe
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LAST consumes less power than FAST. It is mainly
due to the reduced merge operations than in FAST.
In addition to high energy consumption by the merge
operations in FAST and LAST FTL schemes, search
operation to find a victim block every merge operation
can consume the energy. This search operation takes
time highly dependent on the search-count to find the
victim block. We found that energy consumption al-
most linearly increases as it increases the number of the
search-count, which is mainly because of the increased
search time run at the device controller. Consequently
we summarize our findings such that 1) minimizing
merge operation cost in a hybrid FTL schemes, and 2)
optimizing performance-energy efficiency of search ope-
rations in the merge operations in GC both are critical
to make the hybrid-FTL based SSDs energy efficient.

Fig.16. Energy consumption by different FTL schemes. (a) Fi-

nancial trace. (b) TPC-H benchmark.

6 Related Work

An approach that uses log-buffers has been used to
implement hybrid FTL schemes[12,17-19]. They try to
address the problems of expensive full merges, which
are inherent to any log-buffer based hybrid scheme, in
their own unique way. However, all of these attempts
are unable to provide the desired results.

Block Associative Sector Translation (BAST)[17]

scheme exclusively associates a log block with a data
block. In presence of small random writes, this scheme
suffers from log block thrashing[12] that results in in-

creased full merge cost due to inefficiently utilized log
blocks.

Fully Associative Sector Translation (FAST)[12] al-
lows log blocks to be shared by all data blocks. This
improves the utilization of log blocks as compared with
BAST. FAST keeps a single sequential log block dedi-
cated for sequential updates while other log blocks are
used for performing random writes. Thus, it cannot
accommodate multiple sequential streams. Further, it
does not provide any special mechanism to handle tem-
poral locality in random streams.

SuperBlock FTL[18] scheme utilizes existence of
block level spatial locality in workloads by combining
consecutive logical blocks into a superblock. It main-
tains page-level mappings within the superblock to ex-
ploit temporal locality in the request streams by sepa-
rating hot and cold data within the superblock. How-
ever, the three-level address translation mechanism em-
ployed by this scheme causes multiple OOB area reads
and writes for servicing the requests. More importantly,
it utilizes a fixed superblock size which needs to be ex-
plicitly tuned to adapt to changing workload require-
ments.

The recent Locality-Aware Sector Translation
(LAST) scheme[19] tries to alleviate the shortcomings
of FAST by providing multiple sequential log blocks to
exploit spatial locality in workloads. It further sepa-
rates random log blocks into hot and cold regions to re-
duce full merge cost. In order to provide this dynamic
separation, LAST depends on an external locality de-
tection mechanism. However, Lee et al.[19] themselves
realized that the proposed locality detector cannot ef-
ficiently identify sequential writes when the small-sized
write has a sequential locality. Moreover, maintaining
sequential log blocks using a block-based mapping table
requires the sequential streams to be aligned with the
starting page offset of the log block in order to perform
switch-merge. Dynamically changing request streams
may impose severe restrictions on the utility of this
scheme to efficiently adapt to the workload patterns.

Several recent studies were performed to study new
FTL design and implementation for enterprise-scale
SSDs. Park et al.[25] proposed a hybrid flash translation
layer, called CFTL that exploits spatial and temporal
localities in workloads. As the FTL maintains page-
based and block-based FTL schemes, it could fully ex-
ploits the best benefits of each FTL scheme adaptive
to workload changes. Budilovsky et al.[26] proposed an
idea to use host memory to store the FTL mapping
tables, which could not be entirely stored in SSD’s me-
mory due to small size of SRAM. For this, they develo-
ped a mechanism that a host can provide some hints
on interfacing host memory to SSD device.
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In addition to these studies on specific FTL design
and implementation for improving random write per-
formance, there has been a study on optimizing read
throughputs for NAND flash based block devices[27].
Also, there has been a study on efficiently optimizing
B-tree data structures over the FTL layer to optimize
random write performance[28], which is independent of
FTL optimization research. It will be interesting to
study the performance study of their B-tree optimiza-
tion techniques with various FTL schemes. Also Janus-
FTL[29] has been proposed that FTL needs to be de-
signed in a way that can choose a performance-cost wise
optimal FTL among various FTLs (over the spectrum
of page-based FTL to block-based FTL schemes) adap-
tive to dynamically changing workloads. On the con-
trary our paper proposed a specific FTL scheme that
can be used as one of the FTL schemes on the two-end
FTL design spectrum.

7 Conclusions and Future Work

We argued that existing FTL schemes, all based
on storing a mix of page-level and block-level map-
pings, exhibit poor performance for enterprise-scale
workloads with significant random write patterns. We
proposed a complete paradigm shift in the design of
the FTL with our Demand-Based Flash Translation
Layer (DFTL) that selectively caches page-level address
mappings. Our experimental evaluation using Flash-
Sim with realistic enterprise-scale workloads endorsed
DFTL’s efficacy for enterprise systems by demonstrat-
ing that DFTL offered 1) improved performance, 2) re-
duced garbage collection overhead, 3) improved over-
load behavior and 4) most importantly unlike exist-
ing hybrid FTLs, it is free from any tunable param-
eters. As a representative example, a predominantly
random write-dominant I/O trace from an OLTP ap-
plication running at a large financial institution showed
a 78% improvement in average response time due to
a 3-fold reduction in garbage collection induced ope-
rations as compared with a hybrid FTL scheme. For
the well-known read-dominant TPC-H benchmark, de-
spite introducing additional operations due to map-
ping misses in SRAM, DFTL improved response time
by 56%. Moreover, our DFTL scheme even outper-
formed the ideal page-based FTL scheme, improving
the response time by 72% in OLTP trace. Ongoing re-
search studies the feasibility of hybrid storage systems
employing flash at appropriate places within the en-
terprise storage hierarchy along with hard disk drives.
We have also compared the energy consumption of flash
operations (page read, write, and block erase) for differ-
ent FTL schemes for various enterprise-scale workloads.
We enhanced our FlashSim[13] to include a write-back

cache on an SSD for DFTL to study the benefits offered
by the DFTL due to the increased cache space. More-
over we addressed the challenge of developing a perfor-
mance model on SSDs and presented one of the possible
methodologies that can be used to develop the predic-
tion model. Our experimental results showed that SSD
that implements DFTL can be predictable for perfor-
mance.

We have identified several venues for future study.
We discussed power-failure case in host; DFTL not only
requires a minimal non-volatile memory to store global
translation directory (GTD) but also enables a fast re-
covery by just scanning the GTD entries in it. However,
current system does not support strong consistency be-
tween the cached mapping table and GTD. We plan to
further investigate to support such strong consistency
for power-failure issue on DFTL. In addition, we plan
to extend our performance prediction model of SSDs to
be able to build a model for lifetime prediction of SSDs
to given workloads. It will be also interesting to study
the effect of on-board cache on SSDs and develop cache
algorithms that can work well for FTLs.
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